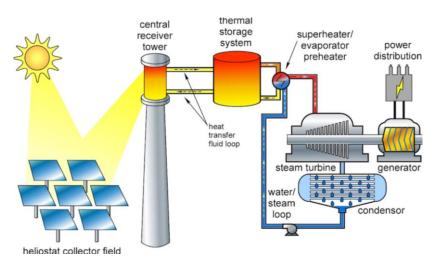


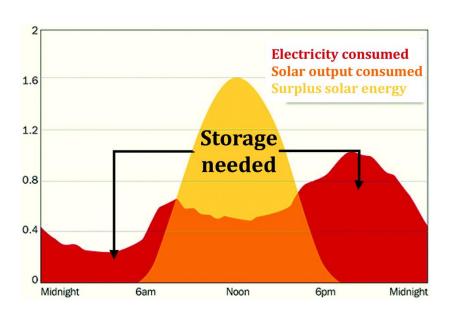
Energy Storage Challenges

Dr. George Karagiannakis

Chem. Proc. & Energy Resources Inst. – Centre for Research & Technology Hellas (CPERI/CERTH)

Thermi-Thessaloniki, Greece / gkarag@certh.gr





The importance of Energy Storage for RES penetration

- ☐ Most RES are intermittent while energy demand is 24/7
- ☐ Storage is the only solution to achieve 24/7 power production from RES
- □ Concentrated Solar Power → cost-effective in terms of storage integration

- i) sensible
- ii) latent
- iii) thermochemical

SET Plan Initiative for Global Leadership in CSP / 2017 - Priorities

Integrated Roadmap Action	Potential contribution	Potential contribution
Advanced Research Programme	to strategic target 1	to strategic target 2
Action 1: More efficient components – HTF,	5	4
receivers, reflecting surfaces		
Action 2: Reliability of CSP plants	3	3
Action 3: Hybridization of CSP plants	4	4
Action 4: Storage systems	5	5
Action 5: Water consumption	1	1
Action 6: Weather forecasting	3	3
Integrated Roadmap Action	Potential contribution	Potential contribution
Industrial Research and Demonstration Programme	to strategic target 1	to strategic target 2
Action 1: More efficient components – HTF,	5	4
receivers, reflecting surfaces		
Action 2: Reliability of CSP plants	3	3
Action 3: Hybridization of CSP plants	4	5
Action 4: Storage systems	5	5
Action 5: Water consumption	1	1

□ Storage → highest potential contribution among all actions related to CSP

CSP TECHNOLOGY DAY SOCRATCES & CSP ERANET JOINT EVENT

Possibilities of storage technologies in CSP

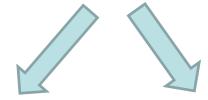
Commercial

Solar salt

 $\checkmark \sim 0.7 \text{ GJ/m}^3$

 $\checkmark \sim 0.5$ \$/kg

✓ 280-560°C


Ceramic materials

✓ 0.4-1 GJ/m³ (indicative)

 \checkmark < 0.5 \$/kg

✓ 200-1000°C

R&D

Latent heat

 $\checkmark > 1GJ/m^3$

✓ 500-800°C

Thermochemical

✓ Up to 10 GJ/m^3

✓ 500-1200°C

Challenging implementation

- ✓ Phase changes, cyclic degradation, fragmentation of R&D activities
- ✓ Integration of a (chemical) plant into a CSP one

CSP TECHNOLOGY DAY SOCRATCES & CSP ERANET JOINT EVENT

Examples of CSP plants with sensible heat storage

19.9 MW Gemasolar Plant, Seville, Spain

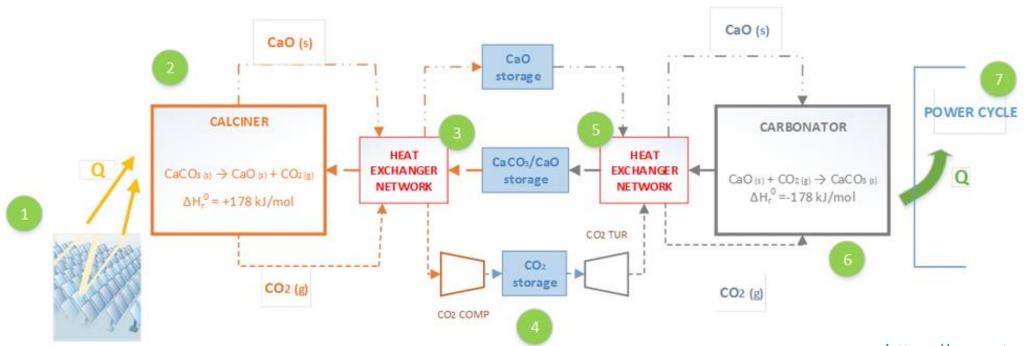
- ✓ Molten Salt storage @ 15 h
- ✓ 24 h/day for 36 consecutive days
- ✓ On since 2011 & has exceeded expectations

110 MW Cero Dominador, Atacama, Chile

- ✓ Molten Salt storage @ 17.5 h
- ✓ Connected to the grid in April 2021

Storage provides high added value to solar thermal electricity

.!!!It is not about the cost/LCOE but about the value of kWh!!!



CSP TECHNOLOGY DAY SOCRATCES & CSP

ERANET JOINT EVENT

Examples of thermochemical energy storage - SOCRATCES

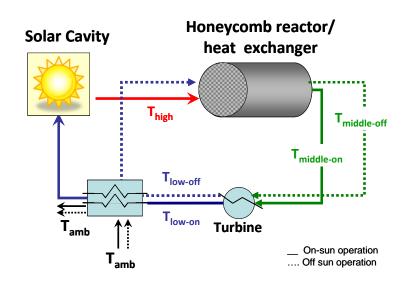
https://socratces.eu

 $CaO_{(s)} + CO_{2(q)} \leftrightarrow CaCO_{3(s)}; \quad \Delta H^{o}_{r} = \pm 178 \text{ kJ/mol}$

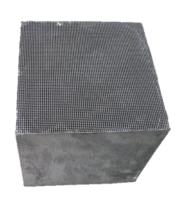
 \checkmark ~ 2 GJ/m³

✓ Storage cost < 12 €/kWh (project's target)</p>

CSP TECHNOLOGY DAY



Examples of thermochemical energy storage - REDOX

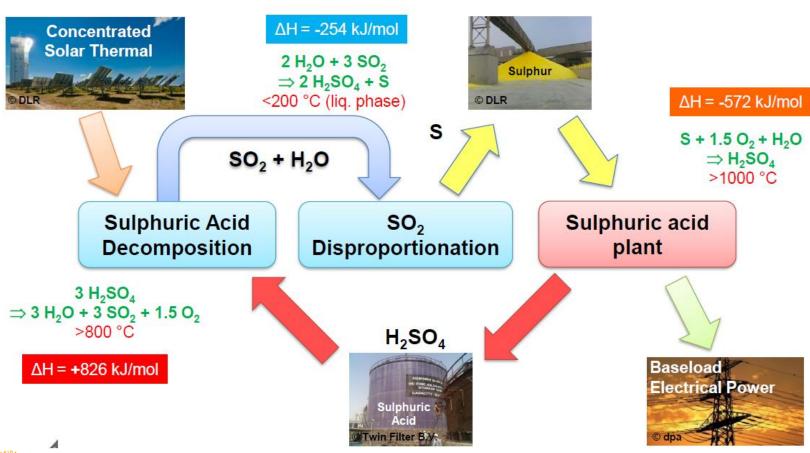

 $MO_{x(s)} \leftrightarrow MO_{x-1(s)} + 0.5 \cdot O_2$

 \checkmark Co₃O₄/CoO, Mn_{2-x}Fe_xO₃/Mn_{3-x}Fe_xO₄, CaMnO₃/CaMnO_{3- δ}

✓ Up to ~ 1.5 GJ/m³

ERANET JOINT EVENT

Tescari et al, 2017, Applied Energy, 189, 66-75



CSP TECHNOLOGY DAY SOCRATCES & CSP ERANET JOINT EVENT

Example of thermochemical energy storage - SULFUR

- \Box Up to ~10 GJ/m³
- □ Potential for synergies with the sulfuric acid industry
 - □ Sulfur: An emerging solar energy carrier

EU-funded project PEGASUS

https://www.pegasus-project.eu/

Thoughts for discussion

- □ Advancement of thermal storage is vital to CSP/CST → the value of kWh
- □ Limitations imposed by solar salt (T < 600°C) hold back next generation high temperature CSP plants
- New emerging concepts:
 - Particle receivers → 1000°C or higher
 - Coupling with combined cycles: Air-Brayton or sCO₂ cycles → higher efficiency
 - Thermochemistry as the next generation of storage
 - **.**..
- ☐ A clear roadmap for storage technologies in CSP/CST is needed

Energy Storage Challenges

Thank you for your attention !!!

Dr. George Karagiannakis
CPERI-CERTH

E-mail: gkarag@certh.gr

